
Unit Testing Practices in Jupyter Notebooks
Jesse Abdul, Hok Wai Chan, Jingyi He, Tevin Takata

Department of Information and Computer Science
University of Hawaii at Manoa

Honolulu, HI
jdcabdul@hawaii.edu
hokwai@hawaii.edu

jhe3@hawaii.edu
takatat9@hawaii.edu

Abstract—Computational notebooks, such as Jupyter Note-
books, are widely used in data science and scientific computing,
but their adoption of software engineering best practices like
unit testing remains understudied. This paper investigates the
prevalence, structure, and impact of unit testing in Jupyter
Notebooks through a large-scale empirical analysis of 966,231
notebooks. We identify only 1,448 (0.25%) notebooks with
probable unit tests, revealing low adoption rates despite the
benefits for reliability and maintainability. Notebooks with unit
tests exhibit higher modularity, documentation, and code reuse,
suggesting a correlation between testing and improved software
quality. However, inconsistencies in test implementation and
unused imports highlight gaps in testing practices. We discuss
implications for tooling, education, and best practices to enhance
testing adoption in notebook-based workflows. This study bridges
the gap between interactive computing and software engineering,
offering actionable insights for researchers and practitioners.

I. INTRODUCTION

Jupyter notebooks are primarily used for data science,
statistics, machine learning, or scientific research. The focus
of the typical notebook practitioner is on exploring, analyzing,
and visualizing data instead of developing production-level
software. Notebook practitioners are not typically classically
trained software engineers who are trained in software de-
velopment methodologies [1]. Software engineers focus on
developing software systems for reliability, maintainability,
scalability, and quality. Testing is one of the fundamental
software development principles that help to ensure the quality
and maintainability of software.

A. Identifying Key Gaps in Current Approaches

Computational notebooks (e.g., Jupyter Notebooks or
Google Colab) have become essential tools in data science
and scientific computing. While they offer unique benefits for
interactive computing and literate programming, unit testing
practices in notebooks remain understudied. Software testing
in general, and unit testing specifically, is not typically a
primary focus for notebook developers. Referencing solutions
identified or developed in other research could be very helpful
in understanding this gap.

B. The Need for New Solutions and Perspectives

Analyzing a dataset of notebooks will help to identify the
prevalence of this issue in real-world examples. By searching

for keywords related to unit testing frameworks for different
notebook languages (e.g., unittest for Python), we can deter-
mine the percentage of notebooks in the dataset that have some
level of unit testing implemented. Further, manually inspecting
notebooks with unit tests can help determine code coverage
and other relevant metrics.

Additionally, notebooks that do and do not have unit testing
implemented can be inspected using code quality tools to
identify common issues. This analysis will allow us to assess
how pervasive code quality issues are in notebooks with
and without unit tests. Understanding these differences can
highlight areas where improvements are needed and where
unit testing could provide the most benefit.

C. Potential Impact on Software Quality and Maintenance

Implementing unit testing as part of the software develop-
ment life cycle for notebooks can have a substantial impact
on the quality and maintenance of code. Ensuring reliability
through unit testing allows issues to be identified earlier in
the development process, helping to confirm that functions
behave as expected. When updates are made, unit tests can be
run to verify that changes do not inadvertently break the code.
Reproducibility, a fundamental principle of scientific research
and data science, is also enhanced through unit testing, as it
helps ensure that code produces consistent results based on
given inputs.

Unit testing also plays a crucial role in debugging by
isolating code problems, allowing practitioners to resolve
issues efficiently. Without unit tests, errors can be harder to
track down, leading to longer debugging times and potential
inconsistencies in results. Furthermore, collaboration becomes
significantly easier when unit tests are in place as they provide
a clear framework for modifying and extending the code.
Practitioners who did not originally develop the code can run
and modify the unit tests to ensure that their contributions do
not break the project.

By addressing these challenges, we can promote the inte-
gration of testing practices within computational notebooks,
ultimately improving software quality and maintenance prac-
tices in data science and scientific computing.



II. GOAL

The primary objective of this research is to investigate the
prevalence and implementation of unit testing among prac-
titioners utilizing computational notebooks. The study aims
to assess how frequently practitioners incorporate unit tests
into their notebook-driven workflows, identify the strategies
employed for unit testing in notebooks – such as common
unit testing frameworks – and explore the relationship between
unit testing and the overall quality of code within notebooks.
Additionally, the research will analyze the impact of unit
testing on software quality and maintainability on notebooks.

Analyzing the prevalence and quality of unit testing im-
plementation will help identify the scope of the problem that
needs to be addressed to improve the quality and maintenance
of notebooks. Once we understand the extent of the issue,
we can examine the consequences of not implementing unit
testing. This research can contribute to improving best prac-
tices in data science and scientific computing by reducing bugs
and errors in notebook projects. Additionally, the findings may
provide practical guidance for new developers, integrating the
best practices identified into their workflow.

The immediate benefits of implementing unit testing in
computational notebooks include increased code reliability,
improved reproducibility, reduced debugging time, higher pro-
ductivity, easier collaboration, and greater developer confi-
dence in the code. In the long term, unit testing can enhance
code maintainability, improve overall code quality, reduce
technical debt, and facilitate a smoother transition from de-
velopment to production. More broadly, adopting software
engineering processes in notebook-based development can
promote a quality-oriented approach to data science, benefiting
the community as a whole.

III. RESEARCH QUESTIONS

RQ1: How frequently do practitioners include unit tests
in Jupyter Notebooks?

Previous studies have primarily concentrated on repro-
ducibility challenges within Jupyter Notebooks [2], but lim-
ited research has been conducted on quantifying unit testing
adoption rates. This study seeks to fill this gap by providing
empirical evidence of the prevalence of unit testing in Jupyter
Notebooks.

By leveraging a large dataset, this research provides a quan-
titative perspective on how structured unit testing practices
are being adopted within Jupyter Notebooks. This approach
allows for a comprehensive analysis of testing trends and
framework usage, offering new insights into testing behaviors
among practitioners.

A clearer understanding of the prevalence of unit testing in
notebooks will enable the development of recommendations
aimed at increasing testing adoption. By identifying gaps and
best practices, this research will contribute to improving soft-
ware quality and overall maintainability in Jupyter Notebook-
based development.

RQ2: Which unit testing frameworks are commonly
used in Jupyter Notebooks?

While most studies focus on unit testing best practices for
traditional software engineering, Jupyter Notebooks introduce
unique challenges that require specialized approaches. This
research highlights those challenges and examines how unit
testing can be effectively integrated into notebook-based work-
flows.

This study offers a structured analysis of testing frameworks
used in Jupyter Notebooks by identifying and categorizing
real-world usage patterns in an established dataset. By doing
so, it provides new insights into how different frameworks are
utilized and their effectiveness in a notebook environment.

By understanding the most commonly used unit testing
frameworks for Jupyter Notebooks, this research will con-
tribute to the development of best practices that improve soft-
ware quality, reproducibility, and maintainability in notebook-
based development.

RQ3: How are unit tests structured within Jupyter
Notebooks?

While traditional software engineering has extensive docu-
mentation on testing, there is limited knowledge about specific
strategies for unit testing within Jupyter Notebooks. This
research seeks to bridge this gap by analyzing how unit testing
is integrated into notebook workflows.

This study categorizes real-world testing approaches within
Jupyter Notebooks and identifies existing gaps in notebook
testing methodologies. By examining different strategies, this
research provides insights into how practitioners structure tests
in computational notebooks.

By identifying unit testing strategies in Jupyter Notebooks,
this research contributes to the development of best practices
that improve the reliability and maintainability of computa-
tional notebook code. These findings will help guide practi-
tioners in adopting more structured testing methodologies.

RQ4: How does the presence of unit tests affect code
quality and maintenance in Jupyter Notebooks?

Previous studies have also explored code quality in Jupyter
Notebooks [2]; however, the role of unit testing in enhancing
notebook quality remains largely unexplored. This research
seeks to address this gap by evaluating the impact of unit
testing on various software quality attributes.

This study takes a novel approach by systematically evaluat-
ing whether unit testing leads to measurable improvements in
software quality and maintainability in Jupyter Notebooks. By
analyzing real-world usage patterns, the research will provide
evidence of the benefits and limitations of unit testing in this
context.

By demonstrating the benefits of unit testing in Jupyter
Notebooks, this research contributes to the development of
best practices that promote more structured, maintainable, and
reproducible software development workflows. These findings
will help guide practitioners in adopting more rigorous testing
methodologies within the notebook environment.

A. Contribution

This study provides empirical evidence for unit testing
prevalence in Jupyter Notebooks, filling a gap in prior research



by quantifying testing adoption. By analyzing commonly used
unit testing frameworks, this research identifies the frame-
works most compatible with Jupyter Notebooks, allowing
developers to make informed decisions about their testing
strategies. Additionally, it categorizes unit testing structures
within notebooks, helping developers integrate testing into
their workflows more efficiently and effectively.

This study also evaluates the impact of unit testing on
Jupyter Notebook code quality, offering insights into how
testing influences maintainability, readability, and reusability.
By establishing best practices for unit testing in notebooks,
the study aims to enhance software quality and maintenance,
benefiting data science and research computing communities.
Through these contributions, this research extends the current
body of knowledge and serves as a foundational reference
for developers, researchers, and educators striving to improve
software engineering practices in computational notebooks.

This study introduces structured unit testing methodologies
to Jupyter Notebooks, an environment that traditionally lacks
formal testing practices. By incorporating established software
engineering principles, this research aims to bridge the gap
between interactive computing and structured software devel-
opment.

Structured unit testing enhances code maintainability and
reusability, ensuring that Jupyter Notebook code remains
modular and easier to manage over time. Through empirical
analysis, this study provides insights into the adoption of unit
testing in notebooks, quantifying its prevalence and impact on
software quality.

This research facilitates the adoption of rigorous testing
practices among notebook practitioners by offering guidance
on integrating unit testing into notebook workflows. The
study also aims to improve existing testing frameworks by
identifying gaps and proposing enhancements that make them
more suitable for notebooks.

Additionally, this work lays the foundation for future re-
search into automation, continuous integration, and testing
solutions specifically tailored to computational notebooks. By
addressing these areas, this research pushes the boundaries
of software maintenance into an evolving domain, ensuring
improved reliability and sustainability of notebook-driven de-
velopment.

IV. LITERATURE REVIEW

De Santana et al. conducted a large-scale empirical in-
vestigation into the types of bugs and challenges faced by
Jupyter Notebook users. By mining 14,740 commits from
105 GitHub repositories and analyzing 30,416 Stack Overflow
posts, researchers identified common bug categories and their
root causes, ultimately proposing a taxonomy for bugs in
Jupyter projects. The findings highlighted unique challenges
in notebook environments, such as issues arising from out-of-
order cell execution. However, while comprehensive in identi-
fying and categorizing bugs, the research did not specifically
focus on the role of unit testing in preventing or mitigating
these issues. The study primarily centered on bug occurrence

and categorization rather than exploring preventive measures
or best practices for testing within notebooks. The proposed
research builds upon these findings by specifically investi-
gating the prevalence and implementation of unit testing in
Jupyter Notebooks. By focusing on unit testing practices, the
study aims to identify strategies that enhance code quality and
maintainability, addressing some of the challenges highlighted
in the empirical analysis.

Wang et al. analyzed the root causes of crashes in machine
learning notebooks on platforms like GitHub and Kaggle.
Results showed that 87% of crashes were due to factors
such as API misuse, data confusion, notebook-specific issues,
environment problems, and implementation errors. Many fail-
ures stem from notebook-specific challenges, including out-
of-order execution and environment inconsistencies. While
effective in diagnosing crash causes, the research did not
explore systematic approaches, such as unit testing, to prevent
these issues. Furthermore, there was a lack of discussion on
testing frameworks or methodologies that could address the
identified root causes. The proposed study seeks to fill this
gap by examining how unit testing frameworks and practices
can mitigate the common issues identified in the analysis.
By exploring the adoption of unit testing, the research aims
to provide actionable insights to reduce notebook-specific
problems and enhance overall code reliability.

Prabhu et al. revealed that many researchers develop their
own software without formal training in software engineer-
ing. High-performance computing (HPC) was found to be
underutilized due to a lack of expertise, and researchers often
struggled with optimizing code efficiency, leading to subop-
timal resource use. While providing valuable insights into
computational science practices, the findings were limited by a
focus on a single institution, which may not be representative
of broader trends. Additionally, the emphasis was primarily on
computational power and optimization, neglecting key aspects
such as reproducibility, testing, and software sustainability.
While highlighting gaps in software engineering practices, the
study did not explore unit testing in computational notebooks.
The proposed research addresses these missing aspects by
assessing unit testing adoption, frameworks, and their impact
on maintainability in Jupyter Notebooks. By focusing on
structured testing methodologies, the study aims to improve
reproducibility and software quality.

Fangohr et al. introduced nbval, a tool that automates the
validation of Jupyter Notebooks by re-executing and compar-
ing outputs. This approach enhances reproducibility by detect-
ing changes in results due to software updates and supports
Continuous Integration, allowing early detection of broken
notebooks. Despite its advantages, nbval has some limitations,
such as providing limited debugging feedback beyond report-
ing mismatched outputs. Its reliance on pytest may also pose
a barrier for researchers who lack software testing experience,
and the tool is primarily designed for Python notebooks,
limiting its applicability to other Jupyter-supported languages.
While nbval validates notebooks by comparing outputs, it does
not enforce structured unit testing. The proposed study extends



TABLE I
LITERATURE REVIEW PAPERS

Study Year Topic Key Findings

de Santana et al. 2022 Bug Taxonomy & Challenges

Investigated bug types and challenges
in Jupyter Notebooks, analyzing 14,740
commits from 105 GitHub repositories
and 30,416 Stack Overflow posts. Identified
common bug categories and causes.

Wang et al. 2024 Failure Analysis in ML Notebooks
Found that 87% of crashes were caused by
API misuse, data confusion, environment
inconsistencies, and implementation errors.

Prabhu et al. 2011 Software Engineering Practices in Research

Found that many researchers develop software
without formal software engineering training,
leading to suboptimal resource utilization and
lack of reproducibility.

Fangohr et al. 2020 Test Framework/Library
nbval automates notebook validation by
re-executing and comparing outputs, supporting
CI integration.

Santos et al. n.d. Developer Perspectives on Unit Testing
Surveyed 32 developers, finding that unit testing
is valued but often done informally due to lack
of training and time.

Pimentel et a. 2019 Reproducibility & Testing in Notebooks

Found that only 24.11% of notebooks executed
without errors, and 4.03% produced the same
results upon re-execution. Only 1.54% contained
test-related modules.

this research by exploring systematic unit testing practices
beyond simple output validation. By investigating best prac-
tices for integrating unit testing into computational notebooks,
the research aims to provide guidance on improving software
quality and long-term maintenance.

Santos et al. surveyed 32 developers from two Brazilian
companies about their experiences with unit testing. Results
indicated that developers generally value unit testing but face
challenges such as a lack of training and time constraints.
A moderate correlation was found between motivation and
organizational support for unit testing, but in practice, test-
ing was often performed in an ad-hoc manner rather than
systematically. Despite offering valuable insights into unit
testing challenges, the study’s focus on only two companies
limits its generalizability. Additionally, there was no specific
analysis of unit testing practices in computational notebooks
like Jupyter. The proposed research builds on these findings
by focusing on unit testing in Jupyter Notebooks, addressing
the gap in research on structured testing in notebook-based
development. By analyzing real-world notebook usage, the
study aims to propose structured solutions for improving unit
testing practices in Jupyter environments.

Pimentel et al. examined the quality and reproducibility of
Jupyter Notebooks on a large scale. Out of 863,878 attempted
executions of valid notebooks, only 24.11% ran without errors,
and only 4.03% produced the same results. Additionally,
only 1.54% of the notebooks contained imported modules
with keywords such as ”test” or ”mock,” indicating a limited
use of unit testing in these environments. While providing
valuable quantitative data on the state of reproducibility in
Jupyter Notebooks, the research did not explicitly discuss unit
testing practices in detail. The proposed study expands on
this work by further investigating the usage of unit testing
frameworks and their impact on notebook reproducibility.

By analyzing how unit testing can enhance the reliability
of computational notebooks, the research seeks to provide
concrete recommendations for improving testing practices in
Jupyter-based workflows.

V. METHODOLOGY

Fig. 1. Outline of the methodology used to analyze unit testing practices in
Jupyter Notebooks, from dataset preparation to final findings.

A. Proposed Methodology

Figure 1 shows an overview of the proposed methodology.
The diagram outlines the full pipeline, including data collec-
tion, preprocessing, SHA256-based deduplication, quantitative
and qualitative analysis, and validation, culminating in the
generation of research findings. The following sections will
elaborate on the individual steps within each methodology
stage.



B. Data Collection and Sources

The dataset used in this study was sourced from a Post-
greSQL database backup file that contained a large collection
of Jupyter notebooks. This dataset was originally compiled
using the GitHub API and published as part of the paper
titled “A Large-Scale Comparison of Python Code in Jupyter
Notebooks and Scripts” [8]. The version used in this study
includes software quality metrics for each notebook as well
as for individual code and markdown cells. The data was
collected from public GitHub repositories using the GitHub
API between September and October of 2020.

To prepare the data for analysis, the PostgreSQL .sql
backup file was downloaded from Zenodo and restored using
a PostgreSQL database. The psql command-line utility was
used to import the data.

C. Dataset Characteristics

The dataset used in this study contains 847,883 Python
Jupyter notebooks and over 16 million associated code and
markdown cells. Of these, 830,728 notebooks include detailed
software quality metrics necessary for quantitative analysis.

A subset of 2,561 notebooks initially matched one or more
variations of the four target unit testing libraries: unittest,
pytest, doctest, or ipytest. After removing 1,113 duplicate note-
books based on matching file hashes, a total of 1,448 unique
Python notebooks remained that imported one or more target
test libraries and contained one or more recognizable unit test
assertions. The filtering criteria ensured that only notebooks
with confirmed testing logic (e.g., assert statements, doctest
prompts, or method calls like assertEqual) were retained for
inclusion.

A summary of this filtering process is shown in Figure 1 and
detailed in Table 2 of the results section. This staged filtering
helped to produce a high-confidence set of testing notebooks,
used for RQ1–RQ4.

Additionally, 59 notebooks were found to import more than
one of the target unit testing libraries, suggesting that hybrid
testing strategies are present in some notebooks. The dataset
also included anomalies such as aliased imports (e.g., import
unittest as ut) and partial imports of individual test methods or
submodules. These patterns are more difficult to detect using
static string matching and may have led to underreporting in
some cases. These cases reflect the diversity and complexity
of how testing frameworks are used in practice.

All notebooks in the dataset included valid and complete
metadata, such as notebook id, notebook language, cell num,
source, and notebook hash. The metadata full field was also
present and well-formed across all included notebooks, sup-
porting valid .ipynb file generation. Exported notebooks were
verified against Jupyter schema requirements and preserved
the correct cell execution order.

While the dataset is highly structured and internally con-
sistent, it excludes notebooks that define test logic without
importing a recognizable testing library. Additionally, the
dataset reflects only publicly available notebooks as of Fall
2020 and excludes private repositories and those governed by

restrictive licenses. Since test detection was performed through
static analysis of import strings and source code, dynamically
generated or runtime-imported frameworks may not have been
captured. Malformed or unstructured import statements could
also lead to false negatives, although these were not treated as
missing data.

D. Data Processing

There were multiple layers of notebook filtering that were
implemented with custom database queries. First, notebooks
with a defined notebook language of Python or a specific
version of python were filtered. The presence of the target
test libraries (unittest, pytest, doctest) was then detected using
regular expressions applied to the notebook imports field to
ensure that no variations of these unit tests were included in
the study.

A PHP script was developed to execute a custom query
developed to extract the notebooks from the database that
imported the target test libraries as well as all associated
markdown and code cell source content. The PHP script
saved each notebook in the git repository, and filenames
were assigned based on notebook id (e.g., 123456.ipynb)
to maintain traceability. To enable unique identification of
individual Python notebook files, the SHA256 hash for each
notebook file was generated and saved in a custom table in
the PostgreSQL database.

A custom database query was developed to identify dupli-
cate notebooks based on the file hash values. Next, a custom
query was executed to identify a unique notebook for each set
of duplicate notebooks based on the corresponding file hash.
This process retained only the first notebook in each duplicate
group, which was then combined with the set of non-duplicate
notebooks using the SQL logic to provide the full set of unique
Python notebooks suitable for manual analysis.

A custom database query was developed to identify unique
notebooks that imported more than one of the target unit test-
ing frameworks (e.g. unittest and pytest), so these notebooks
could be prioritized for manual review.

Variations of test library import strings were extracted using
PostgreSQL regular expressions to detect patterns such as
import unittest2, from pytest import ..., or aliased imports.
The query result was exported with the number of notebooks
that imported each variation of unittest, pytest, and doctest
detected. These variations were manually researched to deter-
mine if they should be included in the study.

To count probable unit test assertions, a conservative match-
ing strategy was used. Regular expressions were defined for
each unit testing library and covered both current and depre-
cated assertion methods (e.g., assertEquals, assertRaisesReg-
exp) for unittest. Native assert statements were also counted
when one or more test libraries were present.

E. Technical Implementation

The development environment for this study incorporated
a variety of tools and programming languages to support
data extraction, transformation, and analysis. The primary



programming languages used were SQL, PHP, and Linux shell
scripting. These were chosen for their compatibility with the
dataset format, ease of integration, and automation capabilities.

The core tools and their versions included PostgreSQL 17.2
(64-bit) as the database engine, pgAdmin 8.14 (64-bit) for
database management and query execution, PHP 8.4.5 (64-bit)
for scripting and file handling, Git Bash 2.47.1.windows.2 (64-
bit) for executing shell scripts, and Git for Windows 2.47.1.2
(64-bit) for source control and interaction with GitHub, where
the codebase was maintained. The system operated on Win-
dows 11 (64-bit) Home Edition.

As for external dependencies, PHP was configured to en-
able the pdo pgsql extension, allowing interaction with the
PostgreSQL database. PostgreSQL was selected because the
dataset was provided as a .sql backup file. PgAdmin was
included for visual interaction with the database. PHP was
chosen due to its ease of setup for handling database queries
and generating .ipynb files, as well as computing SHA256
file hashes. Git and GitHub were used to version control
and manage the project repository, and Git Bash allowed
automation of script execution, including calling PHP from
shell.

Configuration settings were managed using custom scripts.
A shell script configuration file (config.sh) specified the path
to the runtime php.ini file. Similarly, a PHP configuration file
(config.active.php) stored the PostgreSQL connection creden-
tials, which were read by the main PHP script responsible for
generating notebook files. Full configuration instructions and
setup steps were documented in the project’s README.md
file.

A number of custom tools and scripts were developed to
streamline data processing. SQL scripts defined and saved
indexes (define notebook indexes.sql) to speed up query ex-
ecution. View definitions were saved in database view.sql
to simplify query syntax and improve reusability. A
drop all views.sql script was also created to reset and re-
build views during development. The actual queries used
to extract and process notebook data were documented in
database queries.sql. Custom PHP scripts handled the gen-
eration of .ipynb files from the database, while a shell script
automated the execution of these PHP scripts.

The key algorithm implemented in PHP executed a query to
retrieve unit testing notebooks along with associated code and
markdown cells in sequential order, based on the cell num
field. The script initialized a $current notebook id variable
to track the notebook being processed. As it iterated through
each row of the result set, it checked for changes in the
notebook ID. When a new notebook ID was detected, the script
finalized the previous notebook by compiling its cells into a
notebook object, saving it to disk as ¡notebook id¿.ipynb, and
computing a SHA256 file hash for deduplication. After the
final row was processed, the last notebook was saved in the
same manner. These hashes were stored in a separate database
table for later use in identifying duplicates.

All code developed for this project was carefully docu-
mented. SQL view definitions were pushed to the GitHub

repository along with explanatory commit messages. Column-
level comments were included in the PostgreSQL data dic-
tionary. Queries were annotated with in-line comments in
database queries.sql, and the README provided a compre-
hensive overview of each query’s purpose. PHP files included
both inline and header comments detailing function logic
and algorithmic decisions. Likewise, the shell scripts were
annotated, and their usage and configuration were explained
in the README file.

To statistically compare notebook-level metric distributions
between unit test and non-unit test notebooks, Mann–Whitney
U tests were performed using R. The analysis was con-
ducted directly on the PostgreSQL database using the DBI
and RPostgres packages to establish a secure connection.
Individual metric columns were queried in grouped form based
on notebook classification and pulled into R as separate vectors
for statistical comparison. Each test was performed using the
wilcox.test() function with exact = FALSE and conf.int =
TRUE parameters to handle the large sample sizes involved.
P-values and test statistics were exported as structured CSV
files for reporting and visualization. This approach allowed
for efficient, reproducible, and scalable inferential testing
without exporting the full dataset to external files. It also
ensured that the statistical analysis remained tightly integrated
with the filtering and preprocessing logic implemented in the
PostgreSQL database.

F. Analysis Process

For each research question, both quantitative and qualitative
data were collected in order to gain a comprehensive under-
standing of unit testing practices in Jupyter Notebooks. This
mixed-method approach allowed us to address the prevalence
and structural characteristics of unit tests, as well as their
potential impact on code quality.

In the quantitative analysis phase, data from notebook
metadata and code cell metrics were extracted to systemat-
ically evaluate unit testing practices. We identified the most
important metrics that would allow us to thoroughly investigate
our research questions. Some of these key metrics include
cyclomatic complexity, comment count, and notebook imports.
Descriptive statistics, such as frequencies, means, and standard
deviations, were computed to analyze the distribution and
prevalence of these metrics in the dataset. These statistical
measures provided a foundational understanding of unit testing
adoption patterns and their relationship to code quality indi-
cators in Jupyter Notebooks. This included a Mann-Whitney
U test (Wilcoxon rank-sum test) to evaluate whether median
values differed significantly across notebook groups. P-values
were reported for each metric (see Table 5), and a five-number
summary was generated for metrics with valid data ranges (see
Table 4). Some metrics, such as classes comments and com-
ments per class, were excluded due to invalid negative values.
Others (e.g., coupling between functions) were excluded due
to unreasonably high maximum values, possibly indicating
data artifacts. These exclusions were justified to avoid skewing
the analysis.



The qualitative analysis involved a manual review of a
statistically significant sample of 313 Jupyter Notebooks,
based on a 95% confidence level with a 5% margin of error.
Each notebook was reviewed by two independent reviewers
to ensure reliability and reduce individual bias. This manual
inspection was performed to systematically document coding
patterns and unit testing practices, including unit test structure
(e.g., modular design), integration within the notebook (e.g.,
placement relative to production code), and code smells (e.g.,
duplicated assertions, overly complex test logic). This quali-
tative analysis allowed us to explore coding patterns and test
practices that may not be captured through automated metrics,
offering deeper insight into real-world testing behaviors within
notebook environments.

To validate the data, we combined manual and automated
techniques to verify its correctness. Notebooks were con-
sidered valid for analysis if they used a recognized testing
library such as pytest, unittest, or doctest, contained at least
one actual test function or assertion, and were not tutorial or
classroom notebooks, which often lack adherence to real-world
development practices. These criteria ensured that our dataset
remained focused on relevant, production-oriented content.

VI. RESULTS

RQ1: How frequently do practitioners include unit tests
in Jupyter Notebooks?

To address this question, a multi-stage filtering pipeline was
applied to an initial dataset of 966,231 Jupyter notebooks col-
lected from public GitHub repositories. The first stage isolated
notebooks that used Python as their primary language (n =
847,883), followed by a restriction to those with analyzable
code metrics (n = 830,728), and finally deduplication based
on content hashes to eliminate redundant notebook files (n =
582,623). These counts are summarized in Table 1.

From the deduplicated dataset, notebooks were filtered
based on the presence of at least one import of a recognized
Python unit testing framework (unittest, pytest, ipytest, or
doctest), yielding 1,661 candidate notebooks. A final filtering
step confirmed the presence of active test logic (e.g., assertion
statements or doctest prompts), resulting in 1,448 unique
Python notebooks containing probable unit tests. The full
filtering pipeline is visualized in Figure 2.

This represents approximately 0.25% of all unique Python
notebooks with available code metrics, indicating that while
unit testing is present, it remains uncommon in practice within
the Jupyter notebook ecosystem.

TABLE II
NOTEBOOK COUNTS ACROSS FILTERING STAGE

Filtering Stage # Notebooks

Jupyter Notebooks 966,231
Python Notebooks 847,883
Notebooks w/ Analyzable Metrics 830,728
Duduplicated Notebooks w/ Metrics 582,623
Imported Unit Test Library 1,661
Probable Unit Tests (For RQ1/RQ2 1,448

Fig. 2. The filtering pipeline used to identify notebooks with probable unit
tests. The chart illustrates the narrowing of the initial dataset (n = 966,231)
to a final set of 1,448 unique Python notebooks that imported a unit testing
library and contained test logic.

RQ2: Which unit testing frameworks are commonly
used in Jupyter Notebooks?

To answer RQ2, notebooks containing probable unit tests
were analyzed based on which unit testing libraries were
imported. Among the 1,448 unique Python notebooks that
passed the filtering process, unittest was by far the most
commonly used framework, appearing in approximately 80%
of test-related notebooks (see Table 3).

Doctest was the second most prevalent, found in roughly
9% of testing notebooks, followed by pytest, which was found
in about 6.5% of testing notebooks. The use of ipytest, a
tool specifically designed for running tests inside Jupyter
notebooks, was rare, appearing alone or in combination with
other frameworks in only a handful of cases.

In addition to identifying the most commonly used unit
testing frameworks, we also examined how often multiple
libraries were used in combination within the same note-
book. Most notebooks imported only a single framework,
with combinations appearing infrequently. The most common
combination was pytest with ipytest, found in 30 notebooks
(2.1% of test notebooks). This pairing is logical, given
that ipytest is designed to run pytest tests directly within
Jupyter notebooks. The second most frequent combination
was unittest and doctest, appearing in 18 notebooks (1.2%).
Other combinations, such as unittest with pytest or ipytest,
and notebooks importing three frameworks simultaneously,
were rare. Notably, no notebooks in the dataset imported
all four target libraries together. These results suggest that
when developers use multiple testing frameworks in the same
notebook, they tend to pair tools that serve complementary
purposes or workflows, but most prefer to work within a single
testing paradigm. When looking at the few notebooks that use
a combination of testing frameworks, we can see that they are
all tutorial notebooks educating on how to perform unit testing
in Python.

These findings suggest that practitioners heavily favor built-
in or low-setup testing frameworks like unittest and doctest



when working within the notebook environment. Modern
frameworks like pytest, despite their popularity in general
Python development, remain relatively underutilized in the
Jupyter context, potentially due to their command-line orien-
tation or additional installation requirements.

TABLE III
DISTRIBUTION ON UNIT TESTING FRAMEWORKS IN PYTHON NOTEBOOKS

Category # Notebooks % of Notebooks

unittest 1,161 80.1796
doctest 133 9.1851
pytest 95 6.5608
pytest, ipytest 30 2.0718
unittest, doctest 18 1.2431
ipytest 3 0.2072
unittest, pytest 2 0.1381
unittest, ipytest 2 0.1381
unittest, pytest, doctest 2 0.1381
pytest, doctest 1 0.0691
unittest, pytest, ipytest 1 0.0691

Notebooks w/ Probable Unit Tests 1448 100

RQ3: How are unit tests structured within Jupyter
Notebooks?

A random sample of 304 notebooks was manually reviewed
from the 1,448 identified as containing probable unit tests (see
Figure 2). These notebooks were examined to understand test
structure, usage context, and code organization. We found that
unit tests are usually formatted in two different ways: inline
testing immediately after functions, and grouped testing at the
end. Inline testing occurs when a test is written in the code cell
immediately following the implemented function. Grouped
testing refers to consolidating all test code into one cell at
the end of the notebook. Other observed structures include
the use of external testing files or scripts, where a subset of
notebooks offload testing to separate Python scripts or .py
files that import functions from the notebook. Additionally,
some notebooks demonstrate minimal or partial test coverage,
containing only a small number of test cases or testing only
specific blocks of code. A number of notebooks included to-
do notes or incomplete test implementations, where a test-
ing library (e.g., unittest or pytest) is imported but
not actually used, often accompanied by comments such as
“to be implemented. There were also instances of mixing
testing styles, such as combining unittest.TestCase
classes with standalone assert statements, or using pytest-
like test functions without importing the pytest library. An
example from notebook ID 366433 shows the use of the
command %%run_pytest --doctest-modules, which
runs pytest and includes doctests from defined modules.
Inline assertions using basic assert statements were a
common, lightweight testing approach. Some notebooks used
custom testing approaches, defining ad hoc test functions or
relying on print-based validation to simulate unit testing. Table
4 summarizes the observed unit testing formats in Jupyter
Notebooks.

RQ4: How does the presence of unit tests affect code
quality and maintenance in Jupyter Notebooks?

To assess whether unit tests are associated with measurable
differences in code quality and maintainability, this study
compared notebook-level metrics between two groups: 1,448
unique Python notebooks that contained probable unit tests
and 581,175 notebooks that did not. Notebook metrics were
extracted from a public dataset of GitHub notebooks [8] and
analyzed using a combination of five-number summaries and
Mann–Whitney U tests to compare the distributions of values
across both groups.

After reviewing the full set of available metrics, a data
validation step was performed to ensure only meaning-
ful comparisons were included. Metrics with invalid values
(e.g., negative comment counts in comments per class and
classes comments) or non-significant p-values (e.g., ccn and
code cells count) were excluded. The remaining metrics, each
of which showed a statistically significant difference (p <.05)
in the Mann–Whitney U test, are included in Table 5 and Table
6. Figure 3 presents a visual comparison of the median values
for these metrics between the two groups.

The results suggest that notebooks with unit tests exhibit
several characteristics consistent with better structure, doc-
umentation, and modularity. For example, the median de-
fined functions uses in unit test notebooks was 9, compared
to 0 in notebooks without unit tests. This indicates that code
in test-inclusive notebooks tends to reuse functions more
frequently, which may support better modular design and
reduce duplication. Similarly, the median halstead score, a
measure of computational complexity, was nearly three times
higher in unit test notebooks (4.67 vs. 1.57), suggesting that
these notebooks tend to contain more sophisticated logic or
functionality.

Documentation-related metrics also showed meaningful
differences. Notebooks with unit tests had substantially
higher median values for comments count (17 vs. 2), ex-
tended comments count (28 vs. 9), and blank lines count (30
vs. 10), reflecting clearer annotation, greater spacing, and
potentially improved readability. These trends reinforce the
idea that developers who write unit tests may also follow better
documentation practices.

In terms of structure, unit test notebooks included
more classes (classes median = 1 vs. 0) and made
greater use of both API-level functions and Python
built-ins (API functions uses, build in functions uses, and
build in functions count). These findings suggest that unit
test notebooks often use more modular, reusable components
and are less reliant on ad-hoc scripting.

Additional metrics like npavg (number of parameters per
function) and sloc (source lines of code) were also higher
in the test-inclusive group, consistent with larger or more
complete implementations. Although some metrics such as
coupling between methods showed extreme maximum val-
ues, the median differences still indicate meaningful structural
variation.

In combination, these results indicate that the presence of
unit tests is strongly associated with improved code quality,
modularity, and documentation within Jupyter Notebooks.



TABLE IV
OBSERVED UNIT TESTING FORMATS IN JUPYTER NOTEBOOKS

Testing Format Description
Inline Testing Tests written in the code cell immediately following the implemented function

being tested. One of the most popular ways to test a function within Jupyter
Notebooks.

Grouped Testing All test code consolidated into one cell at the end of the notebook. One of the
most popular ways to test a function within Jupyter Notebooks.

External Testing Testing offloaded to separate Python scripts or .py files that import functions
from the notebook. Less popular and used when dealing with multiple lan-
guages.

Minimal/Partial Testing Notebooks containing only a small number of test cases or testing only specific
blocks of code. Used for quick, immediate checks of functions.

Unimplemented Testing Testing library imported but not used, often with ”to be implemented” com-
ments.

Mixed Testing Styles Combination of different testing approaches (e.g., unittest.TestCase classes with
standalone assert statements, or pytest-like functions without importing pytest).

Inline Assertions Lightweight testing using basic assert statements directly in code cells.
Custom Testing
Approaches

Ad hoc test functions or print-based validation to simulate unit testing.

While causality cannot be established from this analysis alone,
the consistency of the differences across a wide range of
metrics suggests that unit tests may serve as a proxy for
broader software engineering best practices. Developers who
write tests may also be more likely to structure, comment, and
refactor their code more thoroughly. This conclusion is further
supported by the robust statistical significance of the observed
differences and the size of the dataset.

Fig. 3. Median Code Quality Metrics by Notebook Type. This horizontal bar
chart shows the median values of selected notebook metrics, comparing note-
books with probable unit tests to those without. Metrics were selected based
on statistical significance and data validity. Unit test notebooks consistently
show higher medians across most quality dimensions.

VII. THREATS TO VALIDITY

This study has several limitations that may affect the in-
terpretation and generalizability of its findings. One concern
is the potential for manual review bias, as the interpretation
of test structure and quality involves a degree of subjectivity.
Although each notebook was reviewed by two researchers to
reduce individual bias, variations in judgment could still influ-
ence the results. The study is also limited to Python notebooks,
which excludes testing behaviors in other languages supported

by Jupyter, such as R or Julia. Although Python is the most
widely used language in this context, this constraint narrows
the applicability of the findings to multi-language notebook
environments.

Another limitation involves code duplication and repository
noise. Despite efforts to filter out duplicates, forks, and clones
of popular repositories may remain in the dataset, which can
distort the overall distribution of testing patterns. In addition,
the automated methods used to identify unit test logic did not
always account for edge cases, such as code embedded in
comments or cells containing a mixture of Python and other
languages like SQL. These scenarios introduce potential mis-
classifications and reduce the precision of automated detection.

The dataset used in this study was collected in 2020, and
as such, it may not reflect current trends in testing practices
or the latest developments in testing tools. This temporal
constraint limits the applicability of the findings to modern-
day workflows. Another issue is the presence of external files
in some repositories. Files such as standalone Python scripts
or JavaScript files may contain testing logic that complements
the notebook but falls outside the scope of this analysis.
This exclusion creates a blind spot in fully understanding
the testing landscape of a given project. Lastly, some testing
behaviors are influenced by the execution environment. Tests
may behave differently when run in a terminal compared to
within a Jupyter Notebook, and tools such as ipytest may yield
inconsistent results depending on the kernel state or execution
order. These environment-specific factors were not examined
in this study and represent another area of potential variability.

In this study, unit tests were primarily identified through
the presence of Python assert statements and related unit
test method calls using regular expression matching in Post-
greSQL. While this approach facilitated scalable analysis
across thousands of notebooks, it is limited by the inability
of SQL-based regular expressions to interpret Python syntax
accurately. Specifically, PostgreSQL cannot reliably distin-
guish between executable code and text contained within
single-line comments (#) or multiline strings (”’ or ”””), both



TABLE V
STATISTICAL COMPARISON OF NOTEBOOK METRICS

Metric Unit Test Notebooks Non-Unit Test Notebooks

Min Q1 Median Q3 Max Min Q1 Median 3 Max

other function uses 0 18 61 72 2687 0 11 28 61 5593
blank lines count 0 17 30 47 2183 0 2 10 26 2827
extended comments count 0 11 28 65 750 0 1 9 27 4670
defined function uses 0 2 9 11 2059 0 0 0 5 909
coupling between methods 0 0 8 11 1341.25 0 0 0 0 6328
md cell count 0 3 12 13 156 0 0 5 13 1464
defined functions count 0 6 8 10 226 0 0 1 3 236
notebook cells number 1 13 26 30.25 569 1 10 20 37 2109
halstead 0 2 4.6667 7.1513 237 0 0.4423 1.5714 3.9474 3563.6
build in function uses 0 6 11 17 733 0 2 8 20 2076
build in function count 0 3 6 6 27 0 1 3 5 42
API function uses 0 2 4 9 190 0 0 3 9 4056
classes 0 1 1 2 29 0 0 0 0 148
comments density 0 0.1163 0.1955 0.3110 0.7358 0 0.0253 0.1111 0.2239 6
npavg 0 0.5375 0.6639 0.8242 3.7368 0 0.5093 0.7344 0.9664 17.6
API functions count 0 2 2 5 46 0 0 2 6 194
mean new methods 0 0 0 1 25 0 0 0 0 56
mean attributes count 0 0 0 0.5 77 0 0 0 0 70
mean override methods 0 0 0 0 4 0 0 0 0 8

Note: Unit Test Notebooks (n=1,448), Non-Unit Test Notebooks (n=581,175). Only metrics with valid values and statistically significant differences (p <
.05) were included.

TABLE VI
MANN–WHITNEY U TEST RESULTS FOR

NOTEBOOK QUALITY METRICS

Metric p-value

classes 0
mean new methods 0
mean attributes count 0
coupling between functions 0
coupling between methods 0
defined functions count 0
defined functions uses 1.49× 10−235

blank lines count 7.85× 10−202

halstead 1.37× 10−159

extended comments count 1.87× 10−143

comments count 3.10× 10−137

comments density 1.32× 10−94

built ing functions count 8.10× 10−81

sloc 2.26× 10−68

extended comments density 1.24× 10−58

mean override methods 6.89× 10−48

other functions uses 5.55× 10−47

md cells count 6.34× 10−46

API functions uses 7.52× 10−20

built in functions uses 8.16× 10−20

API functions count 2.52× 10−19

notebook cells number 3.62× 10−8

npavg 2.48× 10−7

coupling between cells 4.78× 10−6

This table reports the Mann–Whitney U test
statistics and p-values comparing unit test and
non-unit test notebooks across the selected met-
rics. All included metrics are statistically signif-
icant at p < .05.

of which may include unit test keywords or method calls
without executing them. As a result, some false positives (e.g.,
commented-out test code) and false negatives (e.g., multi-line
assertions or uncommon formatting) are possible. A Python-
native parser such as the ast or tokenize module would offer
greater precision but was not feasible for full-scale, database-
driven analysis. To mitigate these limitations, conservative
filtering was applied using an exhaustive list of known asser-
tion methods to reduce misclassification, and resulting metrics
were interpreted with appropriate caution. Additionally, all
notebooks flagged by PostgreSQL as containing no unit tests
were manually verified by one researcher to ensure validity.

In the analysis for RQ4, several metrics were excluded due
to data validity concerns or a lack of statistical significance.
Metrics such as comments per class and classes comments
were removed because they included negative values, which
are not meaningful for count-based fields and likely indi-
cate data processing errors or placeholder values. Addition-
ally, metrics with extreme or unverifiable maximum values,
such as coupling between functions, were excluded to pre-
vent distortion of the statistical summaries. Metrics that did
not demonstrate statistically significant differences between
groups in the Mann–Whitney U test (p ≥ .05), including
ccn, code cells count, and unused imports total, were also
excluded from the five-number summary and visualization.
These exclusions ensured that the analysis focused on robust
and interpretable metrics but may have omitted potentially
relevant dimensions of code quality due to data quality limi-
tations.



VIII. CONCLUSION

This study reveals important insights into the current state
of unit testing practices in Jupyter Notebooks. One recur-
ring pattern identified is the prevalence of unused testing-
related imports, such as unittest, pytest, and doctest, which
are frequently present but not followed by any actual test
code. These unused imports may reflect an intent to implement
tests or reliance on predefined templates, but they ultimately
contribute to a false sense of test coverage. In addition, testing
is often informal and inconsistent, typically using inline assert
statements or minimal test logic without the structure provided
by standard frameworks.

When compared to prior research, our findings confirm
the underutilization of unit testing in notebooks. In our
dataset, only 0.25% of notebooks contained probable unit
tests, which aligns with earlier studies reporting 1.54% of
notebooks containing keywords such as ”test” or ”mock” [1].
This consistency across studies underscores a persistent gap in
the adoption of robust testing practices within notebook-based
development.

From a practical perspective, even basic testing within
notebooks can have a meaningful impact on software mainte-
nance. Inline assertions and lightweight validation techniques
help catch errors early, improve code clarity, and reinforce
intended behavior. These benefits are especially important
in exploratory data analysis and collaborative environments.
However, inconsistencies in testing practices, partial imple-
mentations, and vague intentions often reduce the long-term
effectiveness and maintainability of notebook code.

To improve testing quality, we recommend that develop-
ers use standard testing frameworks such as unittest, pytest,
and doctest directly within notebooks. Tools like ipytest can
facilitate the execution of structured tests in an interactive
context. Developers should avoid including unused imports or
placeholder comments and should instead make test locations
explicit, either by placing them immediately after function
definitions or by grouping them in a clearly designated section
at the end of the notebook.

Several best practices emerged from this study. Developers
are encouraged to use inline assertions for immediate feed-
back, maintain a consistent location for test code within the
notebook, and consider leveraging doctest in markdown cells
or function docstrings to align documentation with validation.
Tools such as ipytest can also be adopted to support a more
interactive but structured testing workflow.

These insights offer practical guidance for improving testing
practices in Jupyter Notebooks and emphasize the importance
of applying sound software engineering principles in interac-
tive and data-driven programming environments.

IX. FUTURE WORK

This study investigates unit testing practices within Jupyter
Notebooks, analyzing a dataset of 966,231 notebooks from
which 1,448 unique notebooks were identified as potentially
containing unit tests. A manually reviewed sample of 304
notebooks was used to examine how testing is structured and

which patterns are most common. Our findings show that
while many notebooks import popular testing libraries such
as unittest, pytest, and doctest, actual usage of these tools
is often minimal or entirely absent. Instead, testing within
notebooks is typically informal, dominated by simple inline
assert statements and ad hoc validation logic. Structured tools
like ipytest are rarely used. When tests are present, they tend
to appear either directly after function definitions or grouped
in a dedicated section at the end of the notebook. These
patterns highlight a clear gap between the intent to implement
testing and the actual practices followed within the notebook
environment.

Future research can expand upon this work in several
important directions. A longitudinal analysis could examine
how unit testing practices change over time, especially in
collaborative or actively maintained notebook-based projects.
Since the dataset for this study was collected in 2020, a new
round of data collection using the same deduplication and
test detection techniques could be applied to modern Jupyter
notebooks. This would allow for a meaningful comparison of
code quality trends and help assess whether the adoption of
testing practices has improved alongside the growing emphasis
on reproducibility and maintainability in scientific workflows.
In addition, interviews with notebook authors could offer
valuable qualitative insights into the motivations, challenges,
and decision-making processes related to testing in notebooks.
Another potential direction involves dynamic execution anal-
ysis, in which notebooks are executed to evaluate actual test
outcomes and runtime behavior. This would provide a deeper
understanding of how effective and reliable these testing ap-
proaches are in real-world scenarios. Together, these directions
offer opportunities to further improve the state of software
engineering practices in interactive, data-driven programming
environments.

REFERENCES

[1] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Ex-
ploration and Explanation in Computational Notebooks. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (CHI ’18). Association for Computing Ma-
chinery, New York, NY, USA, Paper 32, 1–12. https://doi-
org.eres.library.manoa.hawaii.edu/10.1145/3173574.3173606.

[2] J. F. Pimentel, L. Murta, V. Braganholo and J. Freire, ”A Large-
Scale Study About Quality and Reproducibility of Jupyter Notebooks,”
2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), Montreal, QC, Canada, 2019, pp. 507-517, doi:
10.1109/MSR.2019.00077.

[3] Wang, Y., Meijer, W., López, J. A. H., Nilsson, U., & Varró, D., ”Why do
machine learning notebooks crash?,” arXiv.org, Nov. 25, 2024, available
at: https://arxiv.org/abs/2411.16795, accessed: February 2025.

[4] de Santana, T. L., Neto, P. A. da M. S., de Almeida, E. S., & Ahmed,
I., Bug Analysis in Jupyter Notebook Projects: An Empirical Study,
arXiv.org, Oct. 13, 2022, available at: https://arxiv.org/abs/2210.06893,
accessed: February 2025.

[5] Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu
Huang, Hanjun Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh,
Stephen Beard, Taewook Oh, Matthew Zoufaly, David Walker, and
David I. August, ”A survey of the practice of computational science,”
State of the Practice Reports (SC ’11), Association for Computing
Machinery, New York, NY, USA, Article 19, 1–12, available at:
https://doi.org/10.1145/2063348.2063374, accessed: February 2025.



[6] Fangohr, H., Fauske, V., Kluyver, T., Albert, M., Laslett, O., Cortés-
Ortuño, D., Beg, M., & Ragan-Kelly, M., ”Testing with jupyter note-
books: Notebook validation (nbval) plug-in for pytest,” arXiv.org, Jan.
13, 2020, available at: https://arxiv.org/abs/2001.04808, accessed: Febru-
ary 2025.

[7] Santos, L., Santos, F., Parreira, R., & Mello, R. de, ”Investigating
the developer’s perceptions of unit testing and its practice,” Anais
da Escola Regional de Engenharia de Software (ERES), available at:
https://sol.sbc.org.br/index.php/eres/article/view/27044, accessed: Febru-
ary 2025.

[8] Grotov, K., Titov, S., Sotnikov, V., Golubev, Y., & Bryksin, T. (2022).
Dataset of Jupyter Notebooks from the paper “A Large-Scale Com-
parison of Python Code in Jupyter Notebooks and Scripts” [Dataset].
Zenodo. https://doi.org/10.5281/ZENODO.6383114


